skip to main content


Search for: All records

Editors contains: "Pupko, Tal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pupko, Tal (Ed.)
    Abstract The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Pupko, Tal (Ed.)
    Abstract Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with LBA artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale datasets. Pseudoscorpion placement is particularly variable across datasets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount LBA, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones. 
    more » « less
  3. Pupko, Tal (Ed.)
    Abstract Nearly all current Bayesian phylogenetic applications rely on Markov chain Monte Carlo (MCMC) methods to approximate the posterior distribution for trees and other parameters of the model. These approximations are only reliable if Markov chains adequately converge and sample from the joint posterior distribution. Although several studies of phylogenetic MCMC convergence exist, these have focused on simulated data sets or select empirical examples. Therefore, much that is considered common knowledge about MCMC in empirical systems derives from a relatively small family of analyses under ideal conditions. To address this, we present an overview of commonly applied phylogenetic MCMC diagnostics and an assessment of patterns of these diagnostics across more than 18,000 empirical analyses. Many analyses appeared to perform well and failures in convergence were most likely to be detected using the average standard deviation of split frequencies, a diagnostic that compares topologies among independent chains. Different diagnostics yielded different information about failed convergence, demonstrating that multiple diagnostics must be employed to reliably detect problems. The number of taxa and average branch lengths in analyses have clear impacts on MCMC performance, with more taxa and shorter branches leading to more difficult convergence. We show that the usage of models that include both Γ-distributed among-site rate variation and a proportion of invariable sites is not broadly problematic for MCMC convergence but is also unnecessary. Changes to heating and the usage of model-averaged substitution models can both offer improved convergence in some cases, but neither are a panacea. 
    more » « less